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Abstract
In this paper, we report on an integrated program of experimental, computational, and theoretical studies of sheared
zonal flows and radially extended convective cells, with the aim of assessing the results of theory–experiment and
theory–simulation comparisons. In particular, simulations are used as test beds for verifying analytical predictions
(specifically locality and directionality of energy transfer) of nonlinear dynamics and to investigate the suitability
of bispectral analysis for studying nonlinear couplings. Initial comparisons to experimental results are presented,
and future experimental studies are motivated. We also present analytic and numerical work investigating the role
of structures in transport.

PACS numbers: 52.35.Ra

1. Introduction

A central challenge of plasma turbulence research in the
last decade has been to develop a cohesive picture for
understanding how zonal flows [1–3] are generated and
regulate [2, 4–8] turbulence. The picture that has emerged
(at least for turbulence in the core of tokamaks) is one in
which the energy and momentum of turbulent fluctuations is
transferred to a slowly varying shear flow (the zonal flow)
via the Reynolds stress [9], with the zonal flow in turn
shearing or radially decorrelating the turbulence [10, 11].
More recent work has begun the process of understanding
the saturation mechanisms of zonal flows. It is also known
that the turbulent flux is highly intermittent or ‘bursty’.
The largest bursts have been suggested to be due to large,
radially extended convective cells (often termed ‘streamers’
[3, 12, 13]) which can be generated by nonlinear couplings
and secondary instability processes. It is clear that the role
of nonlinear couplings in generating secondary structures

a Present address: CEA/DIF, Départment de Physique Théorique Appliquée,
B.P. 12, 91680 Bruyéres-le-Chatel, France.

which can greatly affect the turbulence and its associated
transport (either to regulate or enhance it) must be thoroughly
understood if quantitative predictions for turbulent transport
are to be made. Significant strides have been made in both
the analytic theory of transport regulation (and enhancement)
and computational investigations of turbulent transport, as well
as experimental studies of such transport. These advances
allow more comprehensive integrated studies of transport to be
undertaken, which are necessary if a true predictive capability
for turbulent transport is to be developed.

Many of the qualitative predictions (such as shear flow
decorrelation of turbulence and the corresponding reduction of
transport) from theory have been verified and well documented
in experiment and simulation. The aim of this paper is to
build upon these previous investigations via the use of more
detailed and advanced methods of quantifying the results of
simulations and physical experiments. In particular, three
issues are addressed in detail:
(1) Quantifying the impact of shear flows on the pathway for

nonlinear energy transfer in different models of drift-wave
turbulence, such as changes in the directionality, locality,
and isotropy of the transfer.
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(2) The utility of, and results from, bicoherence studies
(and bispectral analysis, in general) as an experimentally
realizable tool for quantitative studies of the nonlinear
generation and dynamics of shear flows and their impact
on turbulence.

(3) The significance and utility of probability distribution
function (PDF) based representations of turbulent fluxes,
as opposed to local turbulent diffusivities.

For each issue, we seek to compare results from simulation
and experiment with expectations from analytic theory. By
doing this, we hope to create points of contact between all
three approaches to investigations of turbulence upon which
future studies can build.

2. Theory overview

The theory of zonal flow generation and their role in
regulating turbulence is now well developed. An overview
of the existing theory is given here to serve as a guide for
the investigations presented in the following sections. In
particular, there are several fundamental themes of the theory,
which having been examined qualitatively, should now be
investigated more thoroughly.

Zonal flows are poloidally and toroidally symmetric
(kθ = kφ = 0, finite kr) shear flows, which are predicted to be
generated via radial gradients of the turbulent Reynolds stress

⟨ṽr ṽθ ⟩ ≈
(

c2

B2

)
⟨Ẽr Ẽθ ⟩.

Such generation can take the form of a parametric instability
[14] (which provides an accurate description for initial zonal
flow generation via instability of the fastest growing mode),
or by a modulational instability [2] of a wide spectrum of
drift-waves [15] (related to generation and sustainment of
zonal flows in the nonlinearly saturated state). Both the
parametric and modulational instability descriptions build
upon a presumed scale separation between the drift-wave
turbulence and the zonal flows; in particular, two drift-waves of
approximately the same wavenumber beat against each other
to drive a zonal flow (generally assumed to have kZF

r ≪ kDW
r ).

This assumption implies that the wavevectors of the interacting
triad ⟨φZFẼr Ẽθ ⟩ form ‘narrow’ triangles such as those shown in
figure 1, rather than the equilateral triangles expected in
traditional fluid turbulence theories for isotropic systems [16]

(where |
⇀
k1| ≈ |

⇀
k2| ≈ |

⇀
k3|). Thus, in the modulational

instability model, zonal flow generation represents an inverse

transfer of kinetic energy (to |
⇀
kZF| < |

⇀
kDW|), similar to what

is expected for two-dimensional neutral fluid turbulence [17],

but this transfer is nonlocal (|
⇀
kZF| ≪ |

⇀
kDW|) and anisotropic

(as zonal flows have only finite kr) in nature, contrary to
simple expectations for inverse cascade dynamics in two-
dimensional neutral fluids. Quantitative computational and
experimental tests of directionality (inverse transfer of kinetic
energy), locality (scale separation between drift-waves and
zonal flows), and anisotropy would provide useful knowledge
of the validity and limitations of this theory. Finally, zonal
flows saturate either through weak collisional damping (∝νii )
[18] or possibly through nonlinear mechanisms [19–23]; the
competition between these various saturation mechanisms
represents a current challenge for zonal flow theory.

Figure 1. Schematics of zonal flow–drift-wave interactions for zonal
flow of wavevector q and two drift-waves of wavevectors k and k′.

There are several different ways for understanding how
shear flows are believed to regulate turbulence and the
associated transport. On the simplest level, turbulence reg-
ulation can be understood by noting that a ‘sufficiently strong’
shear flow radially decorrelates the turbulence, thereby reduc-
ing the effective ‘step size’ %r in the turbulent diffusivity
Dturb ≈ %r2/τcorr [10]. One can also view the problem from an
energetic standpoint, and note that the sum of zonal flow gen-
eration by turbulence and the back-reaction of the zonal flows
on the turbulence must conserve total energy (and momentum)
[3, 24]. In such an approach, the back-reaction of the zonal
flows on the turbulence can be modelled as a quasi-linear dif-
fusion in kr of an appropriate wave-action variable [25]. The
simplest description for such a model is of the form [2]:

∂⟨N⟩
∂t

− ∂

∂kr

D
∂⟨N⟩
∂kr

= γlin(
⇀
k)⟨N⟩ − %ω(

⇀
k) ⟨N⟩2 ,

∂U

∂t
+ νRHU = γRSU + [noise],

U =
∑

q

|φq |2, D ∝
∑

q

q4k2
θ |φq |2.

(1)

Here, ⟨N⟩ is the wave-action density (=(1 + k2
⊥)2⟨φ̃kφ̃−k+q⟩ for

drift-wave turbulence in the presence of zonal flows [25]), |φq |2
is the zonal flow spectrum, U is defined as the total zonal flow
intensity, γRS the Reynolds stress drive of the zonal flow (which
is a nonlinear function of the wave-action and its derivatives,
e.g. for the modulational instability,

γRS = γRS

(
∂⟨N⟩
∂kr

)

[2], see equation (3)), and νRH represents Rosenbluth–Hinton
collisional damping [18]. Thus, the radial decorrelation of
turbulence is simply diffusion in kr of wave-action (i.e. the
broadening of the turbulent spectrum in kr appears as a reduced
radial correlation length in physical space), and shear suppres-
sion simply the transfer of energy from unstable modes that
drive transport to stable shear flows which do not. The inter-
ested reader is referred to a more complete discussion of this
topic in [24].

It should also be noted that the model presented in
equation (1) indicates that there is a clear relation between the
turbulent diffusivity and the zonal flow saturation mechanisms
(here taken to be Rosenbluth–Hinton collisional damping).
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This can be seen by noting that in a statistical steady
state, γRS = νRH. Since γRS ∝ ⟨N⟩, one finds that the
turbulent intensity (∝⟨N⟩ as well) scales with νRH. And
since the turbulent diffusivity χ turb is linearly proportional to
the turbulent intensity, one finds χ turb ∝ νRH. This effect is
clearly demonstrated in the work of Lin and co-workers [8].

One can then ask how this regulation of turbulence could
be verified in detail by simulations or experiment. Previous
investigations have focused on examining changes in radial
correlation lengths, as well as quantifying what a ‘sufficiently
strong’ zonal flow spectrum is numerically (generally in terms
of the ratio of shearing rate to linear growth rate (in the absence
of shear) [26, 27]). Here, we seek to verify some nonlinear
aspects of the models. In particular, it is usually found that
the magnitude of the zonal flows is much larger than that of
the turbulence; see appendix for a discussion of the physics,
which sets this ratio. This result follows for two reasons. First,
zonal flows have kθ = 0, and thus cannot couple energy to
drift-waves except by some type of Kelvin–Helmholtz or other
nonlinear process. Certainly, the standard Kelvin–Helmholtz
mechanism is weakened by the sheared magnetic field.
However, microscale Kelvin–Helmholtz variants triggered by
drift-wave noise may also be possible (see section 3.2 for
a more complete discussion of such variants). Second, on
account of their symmetry, zonal flows may be thought of as
fluctuations of minimal inertia and minimal damping, which
favours strong flows. If the dominant nonlinearites governing
the drift-wave dynamics are then taken to be convection
of internal and kinetic energy by zonal flows (as opposed
to like-scale ‘eddy–eddy’ interactions), examination of the

wavevector sum rule
⇀
kDW

1 +
⇀
kDW

2 +
⇀
kZF = 0 shows that the

dominant energy transfer must involve turbulent modes with

wavevectors
⇀
k = (kr , kθ ) and

⇀
k′ = −(kr + kZF

r , kθ ). Thus, a
specific signature of shear flow–turbulence interactions (even
more specifically, radial decorrelation of turbulent eddies)

should be a ‘scattering’ of energy from some wavevector
⇀
k to

other values of kr at the same kθ (again reflecting the idea that
zonal flows lead to a diffusion of energy in kr). Conversely, the
signature of Reynolds stress driving of the zonal flow will be
a transfer of kinetic energy from the drift-waves into the zonal
flows. A study of these signatures in various computational
models of drift-wave turbulence (both to verify their existence,
and quantify their magnitude), along with investigations of
the overall directionality, locality and anisotropy of energy
transfer, is one of the primary goals of this paper.

3. Shear flows and energy transfer

As described above, an understanding of the impact of zonal
flows on nonlinear energy transfer in plasma turbulence is
crucial for a detailed understanding of turbulence and transport
regulation. Towards this end, an extensive study of shear flow
effects on energy transfer in models of drift-wave turbulence
has been undertaken. The first step of this study was to analyse
the effects of shear flows on energy transfer in simulations
of two variants of a basic fluid model for electrostatic
curvature-driven drift-wave turbulence. One variant describes
toroidal (curvature-driven) ion-temperature gradient (ITG)
turbulence (which is generally accepted to be the dominant

source of anomalous particle and ion thermal transport in
the core of magnetic confinement devices) [28], while the
other describes toroidal electron-temperature gradient (ETG)
turbulence (a potential mechanism for anomalous core electron
thermal transport) [29]. For the sake of brevity, only a
brief summary of the model equations is presented here;
the interested reader is referred to the appropriate reference
for more complete descriptions and characterizations of the
models. The model equations for both instabilities are [28,29]:

(δ − ∇2
⊥)

∂φ

∂t
+

∂φ

∂y
− ε

∂p

∂y
− ν(∇2

⊥)φ = −{φ, ∇2
⊥φ},

∂p

∂t
+ (1 + η)

∂φ

∂y
+ χ∇4

⊥p = −{φ, p}.
(2)

The variables φ = (Ln/ρ)|e|φ̃/Te and p = (Ln/ρ)p̃/p0 are
the (density mixing length) normalized electrostatic potential
and pressure fluctuations, respectively, ε = Ln/LB, and η =
Ln/LT; Lf = −d ln f0/dx. The spatial coordinates x and y
are normalized to ρ, and t to Ln/u; the Poisson brackets (right-
hand sides) represent electrostatic convection of vorticity ∇2

⊥φ

and pressure fluctuations (
⇀
vE×B ·

⇀
∇f = −

⇀
∇φ × ẑ ·

⇀
∇f =

ẑ · (
⇀
∇φ ×

⇀
∇f ) = {φ, f }). For the ETG case,

ρ = ρe = vTe

/ce
, u = vTe =

√
Te

me

and it is assumed that Te/Ti = 1. For the ITG case,

ρ = ρs = cs

/ci
and u = cs =

√
Te

mi
.

Hyperviscosity (v∇6
⊥) and hyperdiffusion (χ∇4

⊥) are used for
finite ky modes (see later for the treatment of damping of ky = 0
modes).

The key difference between the instabilities lies in the
density response to the flux-surface averaged potential [15],
which is known to have a strong impact on zonal flow
formation. In particular, simulations of ITG turbulence
saturate rapidly through zonal flow formation [4–7], while
the (toroidal) ETG turbulence simulations show little evidence
of zonal flow formation, and saturate much more slowly, at
a much higher energy relative to mixing-length levels, via
some other nonlinear process [29, 30]. It should be noted
that formation and role of zonal flows (and zonal magnetic
fields [31, 32]) in ETG turbulence is still an area of current
research; in particular, recent work [33] has demonstrated that
ETG zonal flows will be collisionally damped (proportional
to a combination of νee and νei), in a completely analogous
manner to the Rosenbluth–Hinton mechanism for ITG-driven
zonal flow damping (i.e. ITG zonal flows damp on trapped
ions, ETG zonal flows damp on trapped electrons (and
ions)). Nevertheless, the formation of zonal modes in more
complex ETG models is still certainly a possibility, and has
been observed in simulations of slab ETG turbulence [34].
However, the simple model used here does not seem to exhibit
their formation. The quantity δ = δ(ky) is a simple attempt
to include the response of density perturbations to the flux-
surface averaged potential (represented here as an average
over y). For all finite values of ky , δ(ky) = 1. If δ(0) = 0,
the above equations describe ITG-like turbulence, while if
δ(0) = 1, they describe ETG-like turbulence (under the
additional transform y → −y). In the language of [2, 31],
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one could write the effective zonal flow growth rate from
modulational instability as:

γ ZF
q = q4ρ4

δ(0) + q2ρ2

∫
d2 k

k2
y

0k

R(k, q)

(
−kr

∂⟨N⟩
∂kr

)
. (3)

Here, q is the wavenumber of the zonal flow, R(k, q) is
a group-phase resonance function (defined as R(k, q) =
1/(γk − i(/q − ⇀

q ·⇀
vg)), where /q is the zonal flow frequency

(∼=0), and
⇀
vg = ∂ωk/∂

⇀
k is the group velocity of the turbulent

fluctuations with wavenumber
⇀
k), and 0k = Nk/⟨|φ̃kφ̃−k+q |⟩.

Thus, one could say that zonal flows have different ‘effective
inertias’ in the two models. That is, ETG zonal flows are
‘heavy’, while ITG zonal flows are ‘light’, and so ITG zonal
flow generation should be much more effective (since the
analysis assumes the scale separation qρ ≪ 1). Of course, any
differences in saturation mechanisms for the two models will
also be important for determining the dynamics and saturation
levels of the zonal flows. In a like manner to δ(ky), the
damping term for the potential has been set so that all ky = 0
potential modes are damped at the same rate ν (to mirror
the expected form of zonal flow collisional damping [18, 33])
while finite ky modes are damped as νk6/(1 + k2) (all pressure
fluctuations are taken to be damped as χk4). The advantage of
studying these basic, prototypical fluid models of turbulence
is that the governing equations are known exactly, and that
analytic predictions of their dynamics are tractable and readily
available for direct testing. These models also lend themselves
to numerical simulation on desktop personal computers, which
allows for direct, detailed tests of the analytic predictions with
quite reasonable time and machine requirements.

The second step of this study was to investigate the
impact of shear flows on nonlinear energy transfer in data
from gyrokinetic simulations [35, 36] of ITG turbulence, and
to compare these findings with the results from the simple fluid
model. The gyrokinetic simulations represent the state of the
art in numerical studies of plasma turbulence: far more detailed
physics is included in these models, at the cost of greatly
increased computational needs (both time and processor), and
with generally less data available for post-processing.

3.1. Impact of shear flows on energy transfer in fluid models

It is generally believed that most of the crucial underlying
physics for describing drift-wave turbulence can be captured
in fluid models (such as those described above in equation (2)),
even though kinetic treatments are usually required to
accurately predict growth rates, frequencies, and eigenmode
structure. However, when undertaking a complex study
such as the one presented in this paper, it seems reasonable
to begin with the simple models before progressing to
more complex descriptions of the turbulence. Towards this
end, a pair of simulations representing the ITG and ETG
variants of the basic fluid model in equation (2) has been
undertaken. The technical details of the simulations are as
follows. Both simulations are two-dimensional, and assume
periodic boundary conditions in x and y (equivalent to r and
θ , respectively, in a toroidal geometry), with no gradients
other than the implicit ones. Thus, the simulations are
fully local and contain no magnetic geometry (in particular,

no magnetic shear) or profile relaxation effects. Given
these conditions, one can simply define ky = 0 modes
to be zonal modes; modes with finite ky are generically
termed drift-wave or turbulent modes. The algorithm used
is a pseudo-spectral hybrid Crank–Nicholson/RKW3 scheme
with one-third aliasing scheme adapted from neutral fluid
simulations [37], and all simulations were carried out on a
1 GHz PC laptop (in a true testament to advances in computing
power). All simulations used a 256 × 256 grid (giving
171 × 86 modes), Lx = Ly = 128ρ, ν = χ = 0.01,
ε = 0.1, η = 3, and a time step = 0.001Ln/u. The
simulations were run for a total time of 600Ln/u; data was
saved every δt = 1Ln/u. All results presented below have
been averaged over the time range T = [300 : 600]Ln/u

which is taken to correspond to a saturated/slowly evolving
state unless otherwise stated. Snapshots of the normalized
electrostatic potential and pressure fluctuations in the saturated
state (at T = 500Ln/u) are shown in figure 2. Plots of total
energy Etot =

∑
k Ek , Ek = 0.5[(δ(ky) + k2

⊥)|φk|2 + |pk|2]
and flux Qk = 0.5 Im

∑
k kyp−kφk are presented in figure 3,

time-averaged (over the steady-state period, denoted by ⟨ ⟩T)

energy spectra ⟨Ek⟩T in figure 4, and time-averaged zonal flow
spectra ⟨|φk|2⟩T|ky=0 for the ITG case in figure 5. One can
clearly see the effects of the zonal flow suppression of the
turbulence in the ITG case, relative to the ETG case, which does
not exhibit zonal flow formation. All parameters other than
δ(0) being equal, one sees that the ETG case saturates more
slowly than the ITG case, and at a higher level (by roughly two
orders of magnitude, as shown in figures 3(a) and (b)) relative
to mixing length estimates. Also note that the (normalized)
flux in the ETG case is much larger than the ITG case (again,
by roughly two orders of magnitude) as shown in figures 3(c)
and (d). More detailed statistical characterizations of the fluxes
are described in section 5.

For both variants of the model, one can define two energy
transfer functions, T

φ
k (k′) and T

p
k (k′):

T
φ
k (k′) = 1

2 ẑ · (
⇀
k ×

⇀
k′)(|

⇀
k′|2 − |

⇀
k −

⇀
k′|2)

×Re⟨φ∗
kφk−k′φk′ ⟩, (4)

T
p
k (k′) = ẑ · (

⇀
k ×

⇀
k′)Re⟨p∗

kφk−k′pk′ ⟩.

T
φ
k (k′) represents the transfer of kinetic energy Eφ = k2|φk|2

from k′ to k, while T
p
k (k′) represents the transfer of internal

energy Ep = |pk|2, and as such, will be the quantities focused
upon in this section of this paper. With these definitions, one
can rewrite the basic equations as

(δ(ky) + k2
⊥)

∂

∂t

( ⟨|φk|2⟩
2

)
= εky Im⟨p−kφk⟩

−ν(k)⟨|φk|2⟩ +
∑

k′

T
φ
k (k′),

∂

∂t

( ⟨|pk|2⟩
2

)
= (1 + η)ky Im⟨p−kφk⟩

−χk4
⊥⟨|pk|2⟩ +

∑

k′

T
p
k (k′),

∂⟨Ek⟩
∂t

= (1 + η + ε)ky Im⟨p−kφk⟩ − ν(k)⟨|φk|2⟩

−χk4
⊥⟨|pk|2⟩ +

∑

k′

T
φ
k (k′) +

∑

k′

T
p
k (k′).

(5)
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(a) (b)

(c) (d)

Figure 2. Snapshots of electrostatic potential and pressure fluctuations from saturated states of ETG (a) and (c), and ITG (b) and (d) fluid
models.

To clarify the presented plots, note that a positive value of either
transfer function would indicate that energy is being transferred
from k′ to k (an increase of energy in mode k), while negative
values represent a transfer of energy to k′ from k (decrease of
energy in mode k).

An immediate problem that arises when studying these
transfer functions is that of visualization: in their base form,
they are four-dimensional functions of (kx, ky, k

′
x, k

′
y). In

neutral fluids, a fundamental assumption of most turbulence
theories is that the turbulence is isotropic, or close to it.
This assumption suggests one method of reducing the

dimensionality, which is to calculate Tk(|
⇀
k′| → |

⇀
k|), or the

total transfer of energy from all modes with wavevector

magnitude |
⇀
k′| to modes with magnitude |

⇀
k| [38]. One can

view this approach as summing over all triads ‘crossing’ the

boundary between |
⇀
k| and |

⇀
k′|. However, in general plasma

turbulence is not isotropic, particularly in the presence of shear
flows. An alternate method of reducing the dimensionality

is to calculate T
φ
k (k′) and T

p
k (k′) for specific values of k

(i.e. looking at the energy transfer into and out of a specific
zonal flow or turbulence mode). Selecting specific values of
k allows one to take into account the anisotropy present in
spectra, and it is hoped that by looking at the energy transfer
for multiple modes, a cohesive and detailed picture of energy
transfer can be developed. It should be noted, however, that

the Tk(|
⇀
k′| → |

⇀
k|) approach has the advantage of presenting

a ‘global’ picture of energy transfer (at the expense of detail
for individual triplet interactions, and intensive computational
costs); its usefulness in clarifying locality and directionality of
bulk energy transfer is discussed later.

The first component of the fluid model analysis is to
calculate T

φ
k (k′) and T

p
k (k′) for several turbulent modes, all

with |k| = 0.5; results for the
⇀
k = (0, 0.5) mode (which

are representative of the other |k| = 0.5 modes) are plotted
in figure 6. For the ETG model (which does not exhibit
zonal flow formation), we see that both T

φ
k (k′) and T

p
k (k′)
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(c)

(a)

(d)

(b)

Figure 3. Total energy and flux for ETG (a) and (c), and ITG (b) and (d) fluid models.

are best described as interaction regions correlated with the
largest amplitude modes (as indicated by the energy spectrum
shown in figure 4(a)). Simply put, the dominant energy
transfer involves the modes with the most energy. Within this
region, one could characterize the interactions as roughly local

(defined as |
⇀
k| ∼ |

⇀
k′| ∼ |

⇀
k −

⇀
k′|) in nature, isotropic (no

particular values of k′
x or k′

y inside the interaction region are
favoured), and without any clear net directionality of transfer
(i.e. from k to smaller or larger k′). It is also useful to interpret
the structure of the ETG transfer functions as ‘base’ cases, or
controls, in that they reflect the structure of the couplings in the
absence of significant shear flows. One can then ask how these
structures change when shear flows are introduced (i.e. in the
ITG case).

The primary change in the ITG model is the clear transfer

or ‘scattering’ of energy between modes with wavevectors
⇀
k =

(0, 0.5) and
⇀
k′ = (±δkx, 0.5) which is the expected signature

of the strong shear flows, although there are also lower
magnitude couplings similar to the ETG (‘base’) case. Note
that the k′

x scattering does not have a clear directionality (the
kx = 0 drift-wave is both giving and receiving energy to/from
the finite kx modes). In addition, there is also significant
energy transfer into and out of the zonal flow (ky = 0) modes,
reflecting the inherent symmetry of the transfer function. It
is easy to see that T

φ
k (k′) = T

φ
k (k − k′), and therefore if

energy is ‘scattered’ to
⇀
k′ = (±δkx, 0.5), an equal amount

must be transferred to the zonal flow mode with kZF
x = ∓δkx .
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(a) (b)

Figure 4. Time-averaged energy spectra for ETG (a) and ITG (b) fluid models.

Figure 5. Zonal flow spectrum from fluid ITG model.

This symmetry explicitly demonstrates that the generation of
zonal flows and zonal flow suppression of the turbulence by
radial decorrelation (manifested as scattering in kx) are dual
facets of the same, single nonlinear process. T

φ
k (k′) and T

p
k (k′)

for the
⇀
k = (0, 0.15) mode (where the spectrum of finite ky

modes peaks) is shown in figure 7; the results are essentially the

same as those for the
⇀
k = (0, 0.5) mode, suggesting that they

are a universal feature of the transfer. Indeed, examination
of energy transfer for other finite ky modes (both with and
without finite kx) shows similar results. Another interesting
result is that in general, the maximum values of T

p
k (k′) are

!10 × T
φ
k (k′). This difference can be understood by simply

noting that the transfer functions depend on mode amplitudes,
and the ratio of pressure fluctuations to potential fluctuation
intensities ⟨|pk|⟩/⟨|φk|⟩ is much greater than one; the coupling
coefficient for T

p
k (k′) is also larger than that of T

φ
k (k′) for

wavenumbers less than one. However, it should be noted
that the bicoherence and nonlinear phase relations between

the modes of the interacting triplet (analogous to the role of
coherence and cross-phase in determining cross-spectra; see
section 4 for a more detailed discussion of these quantities),
in addition to the mode amplitudes, will also play a role in
determining the energy transfer. An investigation of these
quantities is ongoing. An important consequence of this result
is that while analytic investigations have generally focused on
T

φ
k (k′) for both drift-waves and zonal flows rather than T

p
k (k′),

overall transfer of drift-wave energy may be dominated by
T

p
k (k′) rather than T

φ
k (k′).

The energy transfer functions for the zonal potential and
pressure have also been investigated; results for the dominant
(kx = 0.15) mode are shown in figure 8. Examination of
T

φ
k (k′) and T

p
k (k′) indicates that the majority of energy transfer

involves drift-waves with |ky | < 0.3, −0.2 < kx < 0.5.
Examination of the energy spectrum (figure 4(b)) suggests that
this interaction region correlates with the core of the energy
spectrum (which might be roughly characterized as |kx | < 0.4,
|ky | < 0.3); the offset in kx of the energy transfer interaction
regions can be understood by noting that kZF

x = 0.15. The key
features for T

φ
k (k′) are that the strongest interactions seem to

be (roughly) for |k′
x − kZF

x | ∼ 0.15 (perhaps reflecting the kx

width of the drift-wave spectrum (figure 4(b))), and that there
is both significant transfer into and out of the zonal flow. The
transfer into the zonal flow fits the analytic picture in which
drift-waves drive the zonal flow via transfer of kinetic energy
(i.e. via the Reynolds stress). The transfer of energy from the
zonal flow to the drift-waves is more surprising; one possible
explanation would be that this transfer is a manifestation of an
instability of the zonal flow (not inconsistent with the snapshot
shown in figure 2(b), which suggests that Kelvin–Helmholtz
like instabilities of the zonal flows may well be taking place);
this hypothesis is explored further in section 3.2. It is also
interesting to note that T

p
k (k′) indicates that internal energy is

predominantly being transferred from ky > 0 to ky < 0 drift-
waves (all values of k′

y are included to take into account the
fact that for a fixed k, there is no specific symmetry between
the real parts of the k′ and −k′ triplets). To what extent this
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(a) (b)

(c) (d)

Figure 6. T
φ
k (k′) (left column) and T

p
k (k′) (right column) for drift-wave with kx = 0 and ky = 0.5. (a) and (b) are from the ETG (no shear

flows) case; (c) and (d) are from the ITG (shear flows present) case.

(a) (b)

Figure 7. T
φ
k (k′) (a) and T

p
k (k′) (b) for the k = (0, 0.15) ITG mode (where the fluid drift-wave spectrum peaks).
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(a) (b)

Figure 8. Plots of T
φ
k (k′) (a) and T

p
k (k′) (b) for the dominant fluid ITG zonal mode (kx = 0.15).

result simply reflects the symmetry properties of the coupling
coefficient is unknown.

Several conclusions can be drawn from these results. First,
in the absence of zonal flows, energy transfer is found to
be weakly structured other than to occur in a local region,
set primarily by the energy spectrum. The expectation
that the effect of shear flows is to scatter energy in kx at
constant ky , has been confirmed (i.e. that azimuthal and radial
momentum are conserved in triad interactions), along with a
correlated transfer of energy from the drift-waves to the zonal
flow, demonstrating the inherently dual nature of zonal flow
generation and drift-wave suppression. For energy transfer
into/from a single mode, directionality of transfer is generally
ambiguous. However, Carmargo et al [38] have calculated
T n

k (k′ → k) (=T
p
k (k′ → k), with p → n) and T

φ
k (k′ → k)

for the Hasegawa–Wakatani model [39] (which contains the
same nonlinearities as the model considered here), and found
that the global energy transfer remains predominately local,
with global directionality in the predicted direction [16,17,40]:
internal energy is locally transferred to smaller scales, while
kinetic energy is transferred to larger scales (vorticity is also
found to obey a local, forward cascade). Examination of
T

φ
k (k′) and T n

k (k′) in the Hasegawa–Wakatani model reveals
pictures strikingly similar to figures 6(a) and (b). It then may be
that the appropriate view of energy transfer directionality
(for like-scale interactions) is that it is an emergent property
characterizing the sum of many individual triplet interactions.
Calculations of T

φ
k (k′ → k) and T

p
k (k′ → k) to study these

global properties for the ITG/ETG model are currently in
progress. T

p
k (k′) was found to be greater than T

φ
k (k′), possibly

depending simply on the ratio of pk to φk , and the relative
magnitudes of the coupling coefficients. This result suggests
that consideration of internal energy transfer may be crucial
to understanding the effects of shear flow on total drift-wave
energy transfer, and that greater consideration of T

p
k (k′) may

be needed to understand the full impact of zonal flows on
turbulence. We note that as the effects of shear flows on internal
energy transfer should be fairly insensitive to the source of the

shear flow, an experimental study of these dynamics could be
feasible in an experiment with an imposed shear flow such as
the controlled shear decorrelation experiment (CSDX) [41,42].
Finally, it was found that there is both kinetic energy transfer to
zonal flows from drift-waves (of a nature in general accordance
with analytic theory), and transfer to drift-waves from the zonal
flows, which may be a manifestation of an instability of the
zonal flows.

3.2. Impact of shear flow on energy transfer in gyrokinetic
simulations

Having examined the effects of shear flow on energy transfer
in the simple fluid models, this analysis is extended to address
the data from a global gyrokinetic simulation by Candy
et al [43] of ITG turbulence (specifically, the CYCLONE
base case [44]). It should be noted that calculation of
energy transfer requires knowledge of the appropriate coupling

coefficient 0k,k′(=ẑ · (
⇀
k ×

⇀
k′) in the case of internal energy

transfer, or 1
2 (

⇀
k ×

⇀
k′) · ẑ(|

⇀
k′|2 − |

⇀
k −

⇀
k′|2) for kinetic energy

transfer). These coefficients are determined exactly by the fluid
model used, but in reality only represent lowest-order (in kρ)
approximations to the full gyrokinetic couplings. Because
attention in the section will be generally focused on modes
with |kρ| < 1, it seems reasonable to assume that the fluid
coupling coefficients will be good approximations of the full
gyrokinetic coefficients for this study. In addition, it should be
noted that although an assumption is made on the structure of
the coupling coefficient, this assumption has no impact on the
bicoherence and phase relationships of the modes, which are
also crucial in determining the energy transfer.

Availability of gyrokinetic data for post-processing
limits the analysis to consideration of T

φ
k (k′) at this time.

For reference, the electrostatic potential spectrum for the
gyrokinetic data (and the corresponding fluid ITG spectrum)
is shown in figure 9. Energy transfer for drift-waves with
kx = 0 is investigated first; results are in figure 10.
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(a) (b)

Figure 9. Electrostatic potential spectra from gyrokinetic code GYRO (a) and fluid ITG model (b).

Figure 10. Calculations of T
φ
k (k′) from GYRO code for a mode

with ky = 0.18 (where the gyrokinetic drift-wave spectrum
peaks).

Figure 10 (which shows T
φ
k (k′) for a mode with kx = 0,

ky = 0.18, corresponding to the peak value of the drift-wave
spectrum) indicate that zonal flows clearly transfer energy
from the kx = 0 drift-waves to drift-waves with finite kx and
the same ky as the original mode, and with an extended
scattering width (roughly of the same width as the zonal flow
spectrum). Figure 10 also clearly shows an equally strong
and symmetrical transfer of energy to the zonal flow modes,
which is again expected from the symmetry properties of
T

φ
k (k′); examination of T

φ
k (k′) for other drift-waves provides

similar results. It is interesting to note that in contrast to the

Figure 11. Calculations of T
φ
k (k′) from the GYRO code for a zonal

flow with kx = 0.18.

fluid case, the directionality of the transfer due to ‘scattering’
(and equivalently, the transfer to the zonal flow modes) is
uniformly out of the kx = 0 drift-wave to the finite kx drift-
waves and zonal flows; there is no evidence for the transfer of
energy from the zonal flow to the drift-waves as there was in
the fluid case.

Figure 11 shows T
φ
k (k′) for a zonal flow with kx = kZF

x =
0.18 (the dominant zonal flow mode). There is a clear transfer
of energy from a broad spectrum of drift-waves into the zonal
flow; the transfer is uniformly into the zonal flow, in agreement
with the results shown in figure 10. Some insight into the
structure of the transfer can be gained by noting that for a
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zonal flow mode, the coupling coefficient can be rewritten as

0
φ
k,k′ = 1

2
(
⇀
kZF ×

⇀
k′) · ẑ(|

⇀
k′|2 − |

⇀
kZF −

⇀
k′|2)

= (kZF
x )2k′

y

(
k′
x − kZF

x

2

)
. (6)

Therefore, any modes with ky = 0 (other zonal flows), or
kx = kZF

x /2 cannot exchange energy with the zonal flow.
When combined with the size of the drift-wave spectrum
(figure 9(a)), the transfer into the zonal flow can be interpreted
as a broadband Reynolds-stress drive. Compared to the fluid
ITG case, what is particularly striking in the gyrokinetic results
is the much clearer directionality of the interactions between
the drift-waves and zonal flows. One possible explanation
for the relative ‘clarity’ is that zonal flows are relatively
much stronger in the gyrokinetic case (most likely because of
stabilization with respect to large-scale Kelvin–Helmholtz type
instabilities [19]), and thus convection of drift-wave energy by
zonal flows is much stronger in the gyrokinetic case; this issue
is further explored later. However, this difference cannot be
the entire story, as simply changing the magnitudes would not
affect the directionality of the transfer, only its magnitude;
a change in directionality could only be accomplished by
a change in the relative phases of the interacting modes
(more specifically, the biphase) of a particular triplet (this
restriction follows directly from the definition of T

φ
k (k′)).

Another possible explanation could come from the fact that
fluid closures are inherently imperfect models of the full phase-
space structure of the distribution function; this issue has been
explored by Watanabe and Sugama [45].

Having studied energy transfer in both fluid and
gyrokinetic models, it is natural to try and find a universal
description of the results. These results suggest an intriguing
picture of global energy transfer. They support the expectation
that in the saturated state, zonal flows are sustained by an
inverse transfer of kinetic energy from drift-waves, while
at the same time ‘scattering’ drift-wave energy in kx at
fixed ky . However, the results also indicate that there can be

ky

kx

Figure 12. Heuristic model of energy transfer loop.

significant transfer of energy from zonal flows to turbulence!
One particularly interesting question is whether the transfer of
energy transfer from zonal flows to drift-waves is a signature of
some instability of the zonal flows (possibly limiting zonal flow
growth). If one were to suppose this hypothesis to be the case,
these results would suggest that energy is exchanged between
drift-waves and zonal flows in a ‘loop’ (a heuristic diagram is
shown if figure 12; also see figure 2 of Kim and Diamond [46]
for a variant of the model described here): drift-waves transfer
energy to zonal flows via the Reynolds stress, while at the same
time the zonal flows may give energy back to the drift-waves via
an undetermined nonlinear mechanism; simultaneously drift-
wave energy is scattered in kx by the zonal flows. Coupled
with a low level of residual linear instability and damping of
high k drift-waves (into which energy should also be scattered)
as sources and sinks, a very intriguing potential model for the
saturated state of drift-wave turbulence emerges. It should be
noted that this model is by no means incompatible with earlier
models of saturation levels for zonal flows and turbulence
(in which zonal flows saturate only via collisional damping),
but rather builds upon them to include the possibility (and
implications) of higher-order and nonlinear instabilities as
saturation mechanisms for zonal flows. Generally, one could
write a more generalized set of equations describing zonal
flow–drift-wave interactions, in the form
∂U

∂t
= γmod(⟨N⟩)U − γ ZF

linearU

−γflow(⟨N⟩, VZF,
⇀
r )U + [noise],

∂⟨N⟩
∂t

− ∂

∂kr

D(U)
∂⟨N⟩
∂kr

= (γlin(
⇀
k) + γNL(φq,

⇀
k, . . .))⟨N⟩ − %ω(

⇀
k)⟨N⟩2

(7)

(see equations (25a) and (25b) of [3] for a similar model
describing the generation and saturation of radially extended
convective cells by turbulence); the notation used is the same
as in equation (1). In this extended model, both linear damping
(γ ZF

linear, due to both magnetic pumping and Rosenbluth–Hinton
collisions [47]) and flow instability (γflow) contribute to the
zonal flow damping rate, and there is feedback on the drift-
waves from both linear flow shear (D(U)) and zonal flow
instability (γNL). It is crucial here to realize then that the zonal
flow-damping rate will itself be a sensitive function of zonal
flow profile, collisionality, and drift-wave amplitude.

It is also important to discuss the physics and mechanisms
of zonal flow feedback to drift-waves carefully. First, it is well-
known that magnetic shear [48], Landau damping [49], and
other geometric and kinetic effects will considerably reduce the
virulence of the classical Kelvin–Helmoholtz type instability,
if not stabilize it outright (also see [34]). Thus, it is unlikely that
in a realistic tokamak-geometry, γflow will manifest itself as a
‘macro’ Kelvin–Helmholtz type instability which causes vor-
tex sheet roll-up and destroys the zonal flow; however, this kind
of instability could be occurring in simple shearless slab mod-
els (such as the fluid models discussed in this paper). Rather,
more subtle mechanisms are likely, including possibly:
(1) Noise-induced flow defects and their relaxation.
(2) Modulational instability of non-axisymmetric zonal

modes.
(3) Drift-wave induced viscosity.
(4) Drift-wave wave-packet trapping.
We comment on each of these below.
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While zonal flow potential vorticity profiles have not
been studied in detail, it seems likely that in the presence
of drift-wave interaction, noise emission will induce small
bumps or ‘defects’ [50] in the potential vorticity profile, thus
producing an instantaneous profile with many local inflection
points. The relaxation of such defects may then be thought
of as ‘micro’ Kelvin–Helmholtz mode turbulence, which will
transport zonal flow mean potential vorticity (thus acting as a
turbulent viscosity), and which extracts energy from the zonal
flow and returns it to the drift-wave background. Moreover, in
the presence of such drift-wave noise, it is not even necessary
for the defect-resonant Kelvin–Helmholtz mode to be linearly
unstable! Indeed, as is well-known, weakly damped modes
can be quite effective mechanisms for turbulent transport when
excited by noise [51]. In this picture, then, the instantaneous
zonal flow profile may be thought of as a kind of self-organized
criticality, which evolves due to noise and local relaxation [52].
The effective viscosity could be calculated using standard
methods of mean-field turbulent hydrodynamics (see, e.g.
[51, 52]). As discussed in [46], another possibility is the
generation of low m flows via modulational processes similar
to those, which generate zonal flows. Such low m modes
transport zonal flow momentum and relax the flow profile,
thus providing a vehicle for energy feedback to drift-waves.
As they are comparatively weakly damped, strong drive is not
required to make such a process significant. Further details of
this mechanism can be found in [46]. Of course, the ambient
drift-wave turbulence can itself produce a turbulent viscosity
by E×B transport of zonal flow potential voriticity. A turbulent
viscosity may be estimated by standard quasi-linear methods.
It is also possible that more complex nonlinear phenomena,
such as the trapping of a drift-wave wavepacket, could affect
zonal flow dynamics (see [20–23] for initial studies of this
phenomenon).

To answer the obvious question of how to distinguish
which of these mechanisms is actually at work, it would be
very instructive to:

(1) scan the behaviour of T
φ
k (k′) for zonal flows as a function

of (∇T − ∇TC)/∇TC,
(2) study the spatial structure of zonal flows, at high

spatio-temporal resolution.

Here, (1) should distinguish between varying dependences on
the fundamental system drive and (2) should elucidate the
possible role of defects and their interactions.

This proposed model also underscores the need for a
better understanding of zonal flow saturation mechanisms;
initial efforts on this subject can be found in [19, 34, 46]. In
particular, a better understanding of the competition between
macro tertiary instabilities, collisional damping, nonlinear
spectral feedback, and the newly proposed mechanisms (flow
defects, non-axisymmetric zonal modes, turbulent viscosity,
and wave-packet trapping) is needed. The proposed model
also raises several other questions/problems. Foremost, if
the observed transfer is in fact an instability of the zonal
flows, is this instability what is saturating the zonal flow.
It is possible to imagine, for example, that the zonal flows
might be saturating via linear damping mechanisms, but still
be weakly unstable to various instabilities (which could be
saturation mechanisms in the absence of collisions), or the
formation of defects as discussed earlier. It should also

be noted that for some of the newly proposed zonal flow
relaxation mechanisms (such as flow defects), ‘instability’
may not be the appropriate characterization, as they may
not lead to the destruction of the mean zonal flow profile.
A second, perhaps more philosophical question, is whether
there is any meaningful distinction between a kx = 0, finite
ky mode driven by zonal flow instability or relaxation (the
so-called ‘tertiary instability’ mode) and a kx = 0 drift-wave.
Third, it should be noted that the feedback of zonal flows
on drift-waves might induce spatial spreading of drift-wave
intensity, causing ‘fast transport’ or ‘nonlocality’ phenomena.
A key difficulty for developing this hypothesis has been
how to introduce a spatially nonlocal mechanism for energy
transfer from zonal flows to drift-waves; we note that zonal
flow defects may provide just such a mechanism. Finally,
it seems quite possible that the existence of multiple zonal
flow instabilities and relaxation methods could explain some
of the differences between the fluid and gyrokinetic results,
especially if combined with differences in the spectra (i.e.
the fluid spectrum peaks at lower ky than the gyrokinetic
model) and physics contained in the models. In particular,
although both models exhibit zonal flow formation, differences
in the physics included (particularly geometry effects) should
greatly affect the nature of the zonal flow dynamics, which will
have an impact on the relative saturation levels of the zonal
flows, which in turn will affect the relative magnitudes (and
directionality) of zonal flow–drift-wave couplings.

4. Bicoherence studies and connecting to experiment

While it is important to understand the nonlinear behaviour
exhibited by analytic and computational models of turbulence,
such an understanding is of limited practical use if it cannot
be connected to the experiments the models are expected to
describe. Bispectral analysis [53–55] represents a possible
way of connecting and relating the nonlinear dynamics in
experiment, simulation, and theory. The bispectrum of three
(real) signals X, Y , and Z is defined as

S(k1, k2) = ⟨X∗
k3

Yk1Zk2⟩, (8)

where
⇀
k1 +

⇀
k2 =

⇀
k3, and the brackets represent an ensemble

average. The relation between the bispectrum and en-
ergy transfer is clear: the energy transfer functions Tk(k

′)
are the coupling coefficient times the real part of the appro-
priate bispectrum (i.e. Sφ

k (k′) = ⟨φ∗
kφk′φk−k′ ⟩ for T

φ
k (k′)). The

bispectrum can be decomposed into a bicoherence, biphase, and
quantities related to mode amplitudes. The bicoherence
b(k1, k2) is defined as

b(k1, k2) =
|⟨X∗

k3
Yk1Zk2⟩|√

⟨|Xk3 |2⟩
√

⟨|Yk1Zk2 |2⟩
(9)

and the biphase 1(k1, k2) as

1(k1, k2) = tan−1

(
Im⟨X∗

k3
Yk1Zk2⟩

Re⟨X∗
k3

Yk1Zk2⟩

)

. (10)

There is a natural correspondence between bicoherence/
biphase and the coherence and cross-phase. Indeed, the choice
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of bicoherence normalization is such that if one were to define
a new field X′

k3
= Yk1Zk2 , the bicoherence would reduce to

the definition of the X − X′ coherence, and the biphase the
X − X′ cross-phase. In particular, also note that the values
of the bicoherence are restricted to lie between zero and one
(inclusively), just as values of the coherence are.

Since the bicoherence provides a direct measurement
of nonlinear coupling, it represents a potential avenue
for making contact between experimental analysis and
analytic/computational predictions of nonlinear dynamics
(interpretation of the biphase without knowledge of the
coupling coefficient is generally more complex). By this
statement, we mean that the bicoherence can provide a
quantitative measure of the strength of nonlinear correlation,
just as the coherence provides a quantitative measure of
linear correlation. For instance, a bicoherence with a
value near one indicates the modes of a particular triplet
are strongly correlated, while a coherence with a value
near one indicates a strong correlation between a pair of
modes/signals/fluctuations, etc. However, just like the
coherence, the bicoherence should not be regarded as a
definitive measure of energy transfer, which will depend on
the coupling coefficient, mode amplitudes, and biphase, just
as a (quadratic) flux depends not only upon the coherence,
but also mode amplitudes and cross-phase. Nonetheless,
the bicoherence represents a (relatively) easily understood
statistic, which provides information about the nonlinear
dynamics of the system. Therefore, one might attempt to make
a comparison between the bispectra or bicoherences measured
in experimental data and a simulation of that experiment, or
even analytically predicted values; for instance, initial analytic
work by Diamond and co-workers [24] suggests that the
bispectrum relevant for zonal flow generation by modulational
instability of a broad drift-wave spectrum should take the form:

⟨Ṽ DW
r Ṽ DW

θ φZF
q ⟩ = 2q2

r c
4
s

k2
θ ρ

2
s

(1 + k2
⊥ρ2

s )2

R⇀
k ,q

/ci
kr

∂⟨N⟩
∂kr

|φZF
q |2

(11)

(using the notation of sections 2 and 3) from which it follows
that the bicoherence would be given by:

b(
⇀
k, qr) = 2q2

r ρ
2
s

k2
θ

|krkθ |

∣∣∣∣R⇀
k ,q

/ci
kr

⟨N⟩
∂⟨N⟩
∂kr

∣∣∣∣ |φ
ZF
q |. (12)

The primary difficulty of such a comparison is that
experimental data generally has significant temporal range
with very limited spatial resolution, while computational
results are the opposite: information at many physical points
but for a comparatively short period of time. The problem
can be reduced to finding a way of connecting frequency-
based representations of turbulence (experimental results) with
wavenumber-based representations (computational/analytic
results). In this section, we present the results of a
simple ‘thought experiment’ which attempts to connect these
representations via studying the bicoherence in a heuristic
computational model of published experimental results.

The experimental results to be modelled are presented by
Moyer et al [56], who have reported on the temporal dynamics
of bicoherence near the separatrix during a spontaneous low–
high (L–H) confinement transition in the DIII-D machine

(also see Tynan et al [57] and Holland et al [58] for more
discussions of these results). In this research, it was found
that just before a L–H transition, there was a marked change
in the bicoherence calculated from floating potential and
ion saturation current measurements using a Langmuir probe
array; no changes or dynamics were observed when the probe
was located several centimetres outside the separatrix during a
comparable discharge. In addition, the bicoherence inside the
separatrix suggested that there was strong coupling between a
range of frequencies (100 kHz < f < 1000 kHz), and very
low frequencies (f < 50 kHz); this signature was shown to
be consistent with the idea that the L–H transition may be
triggered by nonlinearly generated zonal flows which suppress
the turbulence long enough for the transport barrier to develop
[56, 59, 60].

To make an initial attempt at contact, a numerical
experiment was undertaken, in which zonal flows are
suppressed, and the turbulence is allowed to evolve into a
saturated state; zonal flow generation was then ‘turned on’.
These simulations are a simple attempt to mimic a transition
from a highly turbulent regime to a shear-flow dominated one,
similar to the conditions examined in [56]. To accomplish this,
the potential and pressure fluctuation fields from the ETG-like
equations (in which zonal flows do not form) at T = 400Ln/u

are taken as initial conditions. Zonal flows are ‘turned on’ by
simply setting δ(0) = 0, and allowing the model to evolve;
the flows appear rapidly, and the system evolves towards a
new nonlinear equilibrium. The underlying hypothesis of this
investigation is that in both the experimental results and the
numerical studies here, zonal flow generation is spontaneously
triggered in saturated drift-wave turbulence; one might then ask
how the bicoherences in the two cases compare as a (initial)
comparison of the nonlinear dynamics. A similar numerical
experiment was previously undertaken by Lin and co-workers
(reported on in Diamond et al [3]) to demonstrate the role of
zonal flows in regulating turbulence.

Total energy Etot (as defined in section 3) for the two
cases (transition to shear-flow dominated, and the ‘base’
turbulent case) is shown in figure 13, as is the kinetic energy
of the zonal modes EZF

k =
∑

kx
k2
x |φZF

k |2. To make contact
with experiment, the data is divided into segments of length
25Ln/u (i.e. T = 400–424Ln/u, 425–449Ln/u, etc). For
each segment, the kx-integrated values of the electrostatic
potential, φ̄(ky, t) =

∑
kx

φ(kx,ky, t) (equivalent to Fourier
transforming the field only along y at x = 0) are calculated,
which are then used to calculate the (squared) bicoherence as

b2(ky1, ky2) = |⟨φ∗(ky1 + ky2, t)φ(ky1, t)φ(ky2, t)⟩|2

⟨|φ(ky1 + ky2, t)|2⟩⟨|φ(ky1, t)φ(ky1, t)|2⟩
,

(13)

where the brackets denote a time average (conventionally,
b2(ky1, ky2) rather than b(ky1, ky2) is often presented in the
literature; we do so here to maintain continuity with existing,
published results). The idea here being that one might
hope that ky of the kx-integrated potential fluctuations could
be a suitable proxy for frequency of the experimentally
measured fluctuations, based on ideas such as the ‘frozen-flow’
hypothesis. As discussed in [56], the frozen flow hypothesis
is valid when the propagation time δt through the sampling
volume d is short relative to the auto-correlation time τcorr;
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(a) (b)

Figure 13. Total energy for base and shear flow cases (a) and evolution of zonal flow energy (b).

Figure 14. Total b2 for base and shear flow cases. Solid lines
indicate time sections used for calculating each data point.

in essence, that the eddies remain coherent and correlated as
they pass through sampling volume. Under this condition,
which is often satisfied in tokamak experiments, which exhibit
L–H transitions and/or internal transport barrier formation, the
frequency can be linearly related to the poloidal wavenumber
(equal to ky in the simulations) via the measured phase
velocity vθ . Thus ky ∝ f in both L-mode and H-mode, and so
our comparison of the wavenumber-space and frequency-space
bicoherences should provide both a reasonable and meaningful
qualitative comparison between simulation and experiment.

The bicoherence is calculated for both the zonal flow
case and the case with zonal flows suppressed. The total
b2 =

∑
ky1,ky2

b2(ky1, ky2) for each time segment is plotted in
figure 14, similar to figure 4 of Moyer et al. Comparing with the
energy history plots, one can see that the zonal flow evolution
dynamics clearly impact the dynamics of total bicoherence,
but quantifying the exact connection is a harder question.
However, these results and those published in Moyer et al
seem qualitatively quite similar, in that for the case where shear
flows are evolving, strongly correlated temporal dynamics in
the bicoherence are seen, whereas the cases without evolving
flows show steady, lower levels of total bicoherence. For a
more detailed comparison with Moyer et al, b2(ky1, ky2) from
the T = [450 : 474] and T = [525 : 549] segments for both
the zonal flow and base case are shown in figure 15. For the
zonal flow case, the structure of the bicoherence in the various
segments is generally similar to the T = [450 : 474] segment,
while the widespread structure of T = [525 : 549] is unique
to that time segment. The base cases all show roughly the
same structure (strong local coupling between the lowest ky

modes). The banding structures of the [450 : 479] segment
are intriguingly similar to figures 3(b) and (d) from Moyer
et al while the results for the base case are quite similar to the
structure exhibited by the bicoherence when well separated
from the L–H transition. These structures indicate strong
coupling between relatively high values of ky (based on where
spectra indicate the bulk of the energy is located) and very low
values of ky ; that is, significant nonlocal coupling between
high-wavenumber modes and very low wavenumber modes.
Note that the ky2 = 0, −ky1 axes have been intentional set to
zero (as they are for the plots in Moyer et al). If they are not,
they are ∼1 for all values of ky1. This is a consequence of the
fact that the mean value of φ (represented by ky = 0) is slowly
or not evolving at all. An important open question is how this
relates to turbulence–zonal flow coupling, as zonal flows have
ky = 0. It is also interesting that the interactions are generally
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(a) (b)

(c) (d)

Figure 15. ky resolved b2 from shear flow (a) and (b), and base (c) and (d) cases. Plots (a) and (c) correspond to T = [450 : 474], while (b)
and (d) correspond to T = [525 : 549].

for much higher ky than one might guess from looking at the
(kx , ky) spectrum, which is also in agreement with the results
of [56]. Finally, it should be noted that the work presented
in [56] is from the edge of the DIII-D tokamak, which raised the
possibility that interactions between geodesic acoustic modes
(GAMs) and the turbulence [61,62], rather than zero frequency
zonal flows, was being observed. However, the model used
here does not contain GAMs, which supports the idea that the
shearing of the turbulence does not depend sensitively on the
magnetic geometry used (which GAMs do depend on, being
driven by poloidal asymmetries).

This simple experiment provides a very interesting point
for furthering the contact between experiment, simulation,
and theory. Understanding the structure and dynamics
exhibited by the bicoherence remains an open problem,
particularly why the bicoherence peaks at high ky1/f1. The
qualitative similarity between the numerical and experimental
results indicate that developing more rigorous methods
of connecting the wavenumber-space and frequency-space

representations would be of great utility in connecting
the analytic/computational and experimental pictures. One
potentially illuminating way of building upon this experiment
is to study the effects of a time-varying externally imposed
shear flow on the bicoherence of turbulent fluctuations in
plasma column, and to then compare those results with the
results of Moyer et al and those presented here. Such an
experiment is currently underway on the CSDX machine [41],
and will be reported upon in a future publication.

These results also suggest several experimental
approaches, which could allow the direct experimental study of
the nonlinear dynamics of turbulence–zonal flow interactions
and structure formation in confinement devices. Point-wise
measurements of turbulence can be used to make qualitative
comparisons of shear flow formation dynamics in experiment
and simulation in a manner similar to that used in this paper.
However, moving beyond such qualitative studies probably
requires the application of new or emerging diagnostic and/or
analysis capabilities. For example, time-resolved turbulence
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imaging diagnostics of sufficient spatio-temporal resolution
could provide evidence for the existence of streamer-like events
and zonal flow structures. As shown in this paper, study of the
nonlinear dynamics requires examination of the higher order
statistics such as the cross-bispectrum of the potential fluctua-
tions along with knowledge or inference of the coupling coef-
ficients. Direct measurement of wavenumber-space resolved
potential fluctuation measurements is not possible in these
experiments; however, application of time-delay estimation
techniques [63] to spatio-temporal density fluctuation imaging
via beam-emission spectroscopy (BES) [64] may provide mea-
surements of the fluctuating velocity field [65]. This field quan-
tity can then, in turn, be used to find the relevant bispectrum and
thus may provide a means to study nonlinear energy transfer
between turbulence scales and zonal flow scales. By com-
bining this velocity field with density fluctuations (available
from BES imaging) or, in the future, with electron tempera-
ture fluctuations measured via a proposed Thomson imaging
diagnostic [66], it may be possible to study turbulent particle
and electron heat fluxes in the interior region of the tokamak.
Such poloidally localized measurements are also needed to
study the behaviour of flux PDFs, the importance of which is
discussed in the following section.

5. Studies of heat flux PDFs

5.1. Theoretical summary of streamer physics, avalanches,
and heat flux PDFs

Until recently, transport was modelled as a local diffusion
process, described by a turbulent transport coefficient. Alas,
all things must pass, and during the past 5–7 years, a growing
body of experimental, theoretical, and computational evidence,
which suggests that transport is bursty and intermittent has
accumulated in the literature (see, e.g. Politzer [67] or Carreras
et al [68]). Central to this idea is the notion of an ‘avalanche’,
or ‘transport event’ [51]. Simply put, an avalanche is a
radially extended fluctuation, extending over many correlation
lengths of the elemental turbulence, which causes vigorous
transport. In sandpile models, an avalanche is associated
with the correlated topplings of several neighbouring cells
[69, 70]. It is considerably less clear what constitutes an
avalanche in a continuum model. One possibility is that
an avalanche is an azimuthally symmetric ‘front’ or ‘pulse’
which flow rapidly down the gradient. Of course, such
a picture presumes that the front in question is stable, i.e.
that it does not undergo corrugation instability and break up
into extended fingers. Another possibility is that avalanches
are composed of streamers, which are radially extended,
poloidally localized secondary structures [12, 13]. Such
structures are equivalent to the popular notion of convective
cells [71], albeit with strong poloidal localization, and with
finite correlation and lifetimes. The coherent theory for
nonlinear streamer formation in drift-wave turbulence is
discussed in [72]. There, a set of generalized nonlinear
Schrödinger equations are derived, for both streamer and
zonal flow type secondary structures. The statistical, random
phase approximation theory of nonlinear streamer formation
in ITG turbulence is presented in [3]. Streamers are generated
by modulational instability (via both vorticity and pressure

advection nonlinearities), and self-regulate via the effects of
their poloidally sheared radial flows, which tilt eddies and thus
generate large kθ [3], or by Kelvin–Helmholtz type instability
[73]. It is interesting to note that streamer saturation levels
imply that the variance of the transport flux (i.e. normalized
mean square modulation) is of order unity [3], thus reinforcing
the need for a statistical approach to transport.

In this paper, we focus primarily on PDF based
characterizations of the heat flux. Differences between the
PDFs of the local (Q(x, y, t)) and flux-surface averaged
(⟨Q(x, t)⟩y) heat flux for the fluid models discussed in
section 3 are investigated. In addition, a novel analysis
technique is used to determine the PDF of ‘heat pulses’
(i.e. ion thermal transport avalanches) in simulations of ITG
turbulence according to strength/intensity. The structure of
this distribution (in particular, the power-law fit of the large
pulse tail) is discussed in relation to the results of ρ∗-scaling
studies of the simulation data.

5.2. Characterization of fluxes via PDFs

As described in the previous section, there is now considerable
evidence that experimental turbulent transport is quite
intermittent or bursty. The role of localized transport events or
flux structures has also been highlighted. One method of
characterizing the intermittency of a field is via the PDF
of that field. Such an investigation has been carried out
in the previously described (section 3) fluid models of plasma
turbulence. PDFs of the local and flux-surface averaged
turbulent fluxes have been calculated, the results of which are
shown in figures 16 and 17, respectively. The local heat flux
Q(x, y, t) is defined as

Q(x, y, t) = pvx = −p(x, y, t)
∂φ(x, y, t)

∂y
, (14)

while the flux-surface averaged heat flux ⟨Q(x, t)⟩y is
defined as

⟨Q(x, t)⟩y = 1
Ly

∫
dy pvx

= − 1
Ly

∫
dy p(x, y, t)

∂φ(x, y, t)

∂y
. (15)

For each case, the PDF of the quantity divided by its standard
deviation is plotted; for example, figure 16(a) plots the PDF of
Q(x, y, t)/Q(x, y, t) for the ETG case, where Q(x, y, t) is the
standard deviation ofQ(x, y, t). Normalizing the quantities by
their standard deviations allows for more accurate comparisons
between the various cases.

There is a quite striking contrast between the local and
averaged fluxes for both models. The local flux PDFs
are strongly non-Gaussian, with extended ‘wings’ and high
kurtosis (but little skew), while the average flux PDFs are
strongly asymmetric (skewed). It should be noted that the
non-Gaussian form of the local flux PDFs is not necessarily
unexpected, as the flux is the product of two highly correlated
variables. More significantly, it should be noted that the
PDF profiles change drastically upon averaging over flux
surfaces, and that there are some differences between the ITG
and ETG averaged heat fluxes. Since flux-surface averaging
is equivalent to removing information relating to poloidal
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(a) (b)

Figure 16. PDFs of local heat fluxes from ETG (a) and ITG (b) fluid models. Axes have been normalized by the PDF standard deviations.

(a) (b)

Figure 17. PDFs of flux-surfaced averaged heat fluxes from ETG (a) and ITG (b) fluid models. Axes have been normalized by the PDF
standard deviations.

localization, these results suggest that poloidally localized flux
structures are important components of the turbulent heat flux.
Such poloidally localized, radially extended eddy structures
correspond precisely to the streamers discussed previously.

5.3. Heat pulse analysis of average flux

Previous sections (5.1 and 5.2) have highlighted the importance
of coherent flux structures in determining the heat flux.
Extracting the true impact of these structures from single-
point estimations of the flux PDF is quite difficult, as the
structures will, in general, impact every moment of the PDF.

To remove this difficultly, one might note that the significant
spatial resolution of simulations should allow more detailed
investigations of the flux, which could incorporate the effects
of correlation lengths and other intrinsic features of coherent
structures.

We present here such an approach, termed ‘heat pulse
analysis’. In this analysis, the flux-surface averaged turbulent
heat flux is decomposed into a distribution of ‘pulses’ of
different characteristic scales; that is, q⊥(r, t) ≡

∑
i qi(r, t).

Each qi(r, t) is positive-definite, has local support in (r , t), and
has a single space/timescale. The size of the ith pulse is defined
as hi ≡

∫
dr dt qi(r, t). The PDF of pulse sizes f (h) then
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replaces the single-point PDF of the flux. It then immediately
follows that ⟨q⊥⟩r,t =

∫
dh hf (h). A particular advantage of

this approach is that by examining how f (h) falls off for large
pulse-sizes, one can determine which values of h dominate the
total heat flux. Examination of f (h) in gyrokinetic simulations
reveals that it is roughly flat for h < hc, and falls of as a power
law f (h) ∝ h−α for h ≫ hc. The power law dependence
highlights the importance of two key scales (representing the
beginning and end of the power-law tail): the small scale hc

which is set by physics, and a largest scale hmax which is set
by the box size (which translates as tokamak minor radius a).
If the fall-off of f (h) at large h is slower than h−2 (α < 2), then
the heat flux is dominated by the largest heat pulses (i.e. set by
hmax) and a Bohm-like scaling is obtained, while α > 2 gives
a gyroBohm-like scaling set by hc.

To see this connection more clearly, it is useful to consider
the physics behind the notions of Bohm and gyroBohm
scalings. In either case, one assumes there is a turbulent
diffusivity D = (%r)2/%t , and %r/%t ∼ %u, so that
D ∼ %r%u. Estimating %u ∼ V ∗ ∼ ρvT/a (assuming
a ∼ Ln ∼ LT; ρ is the (thermal) gyroradius, and vT the
thermal velocity), one is left with estimating %r . There
are two natural choices for the %r: ρ (the inherent scale of
the gyromotion of the particles) or a (the largest perpendicular
scale upon which fluctuations could exist). Choosing %r ∼ ρ

gives D = DGB ∼ ρ2vT/a, while choosing %r ∼ a gives
DB ∼ ρvT. The salient point is that the global transport scaling
(D = DGB or D = DB) depends upon the characteristic
scale of the transport, which may or may not depend upon
the system size. What the heat pulse analysis reveals is
what the characteristic scale for the heat flux is: is it the
largest scale of the simulation (the α < 2 case), or is it
independent of the simulation size (the α > 2 case). It is
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Figure 18. PDFs of heat pulse distributions for weak shear flow case (a) and strong shear case (b).

in this context that we label the results as giving Bohm-like
(α < 2, transport scale set by the largest scale available to
the turbulence) or gyroBohm-like (α > 2, transport scale
separate from simulation box size) scalings. Thus, while not
the same as saying an actual simulation predicts a Bohm or
gyroBohm transport scaling, the heat pulse analysis method
does represent a clear step forward in linking the importance
of large-scale, coherent flux structures predicted by theory and
simulation with experimentally observed transport scalings.

An initial study using this analysis has been undertaken
for results for a pair of gyrokinetic simulations of plasma
turbulence (using data from the Lawrence Livermore National
Laboratory code [5, 74]), with externally imposed shear flows
of varying strengths; results are presented in figure 18. When
the shear flow is weak or absent (‘L-mode’-like, figure 18(a)),
α = −1.524 ± 0.1295 (implying a Bohm-like scaling) while
α = −2.279±0.1276 (gyroBohm-like scaling) for the case of
strong shear flow (‘H-mode’-like, figure 18(b)). These results
demonstrate a clear connection between the presence of large,
radially extended heat flux events (manifested as α < 2) and
global scalings of transport. They also provide an intriguing
counterpart to the ρ∗-scaling study of transport in a global
gyrokinetic code by Lin et al [75]. Work is currently underway
to extend the analysis to include negative values of qi(r, t) and
multiple physical dimensions (in particular, to be able to more
clearly capture the poloidal localization of structures such as
streamers), and to apply it to the fluid models described in
section 3.

6. Conclusions

In this paper, results from integrated experimental, compu-
tational, and analytic investigations of the role of nonlinear
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couplings in structure formation and turbulent transport
regulation have been reported. The principal results are:

1. The generation of zonal flows via the turbulent Reynolds
stress, and the simultaneous suppression of turbulence
via ‘scattering’ in kradial have been explicitly verified,
and demonstrated to be complementary components of
a single nonlinear process.

2. Significant energy transfer from zonal flows to drift-
wave modes has been observed in both fluid, but not
gyrokinetic simulations. A variety of nonlinear zonal flow
relaxation processes are discussed, and a qualitative model
for the saturated state of drift-wave turbulence, which
incorporates this mechanism, is presented. In particular,
the idea of zonal flow defect formation is proposed as an
alternative to macro tertiary instabilities which destroy the
zonal flow.

3. A simple numerical experiment which attempts to
heuristically model the experimental conditions of [56]
(a study of an L–H transition in DIII-D) is shown to
qualitatively reproduce much of the bicoherence dynamics
and structure presented in that paper, and future directions
for integrated studies are motivated.

4. Significant differences in the PDFs of local and average
heat fluxes for fluid models of turbulent transport have
been demonstrated, highlighting the possible importance
of poloidally localized structures in the flux. This result
suggests that streamers and probability-based descriptions
of the heat flux should be investigated more thoroughly.

5. A new method for investigating spatio-temporally
resolved heat fluxes which incorporates the importance
of coherent structures demonstrates a clear connection
between the presence of radially extended heat flux
structures predicted by theory and simulation with
experimentally relevant transport scalings.

These findings motivate several future directions of
inquiry. First, more comprehensive investigation of
the mechanisms responsible for zonal flow saturation is
needed. Examination of energy transfer in other gyrokinetic
simulations for evidence of the hypothesized energy transfer
‘loop’ should also be undertaken (particularly as a function
of deviation from marginality). Efforts to make clearer
contact between experiment and simulation/theory should be
continued. Finally, the heat pulse analysis technique should be
refined and extended to many more sources of data, in order
to build a more complete understanding of the role of coherent
structures in turbulent transport.
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Appendix. Ratio of zonal flow to drift-wave intensity

In a wide range of simulations of ITG turbulence, it is found
that the magnitude of zonal flow intensity (⟨|φZF|2⟩) is almost
always much greater than the peak value of the drift-wave
spectrum (⟨|φ̃k|2⟩). This difference can easily be understood
in terms of the predator–prey model of equation (1). One can
recast in a zero-dimensional form [2],

∂ε

∂t
= γ ε − αεU − (%ω)ε2,

∂U

∂t
= αεU − νRHU.

(A1)

Here, ε is proportional to the total drift-wave intensity (i.e.
the k-space integrated drift-wave spectrum), while γ and %ω

represent k-space averaged growth and nonlinear damping
rates, respectively. The kr -space diffusion term has been
replaced by −αεU ; since the scattering of drift-wave energy
in kr which the diffusion term represented is necessarily equal
to the Reynolds stress drive of the zonal flow (see section 3),
it then directly follows that one can replace γRSU with αεU in
the zonal flow evolution equation.

It is easy to see that the model of equation (A1) has a
(nontrivial) fixed point at ε = νRH/α, U = (γ −%ωνRH/α)/α,
from which it follows that the ratio of zonal flow intensity U

to drift-wave intensity ε is

U

ε
= γ

νRH
− %ω

α
. (A2)

For realistic parameters, γ /νRH ≫ 1, %ω/α (%ω/α ∼ O(1) in
normalized units). Therefore, the fact that zonal flow intensity
is found to be larger than the drift-wave intensity is a natural
consequence of the ratio of linear drift-wave growth rate to
zonal flow damping rate being much larger than one.
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